3.6.10 \(\int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\) [510]

3.6.10.1 Optimal result
3.6.10.2 Mathematica [A] (verified)
3.6.10.3 Rubi [A] (verified)
3.6.10.4 Maple [B] (verified)
3.6.10.5 Fricas [B] (verification not implemented)
3.6.10.6 Sympy [F]
3.6.10.7 Maxima [B] (verification not implemented)
3.6.10.8 Giac [F]
3.6.10.9 Mupad [F(-1)]

3.6.10.1 Optimal result

Integrand size = 36, antiderivative size = 99 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {4 \sqrt [4]{-1} a^2 (A-i B) \text {arctanh}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a^2 (A+i B) \sqrt {\cot (c+d x)}}{d}+\frac {2 i B \left (i a^2+a^2 \cot (c+d x)\right )}{d \sqrt {\cot (c+d x)}} \]

output
-4*(-1)^(1/4)*a^2*(A-I*B)*arctanh((-1)^(3/4)*cot(d*x+c)^(1/2))/d+2*I*B*(I* 
a^2+a^2*cot(d*x+c))/d/cot(d*x+c)^(1/2)-2*a^2*(A+I*B)*cot(d*x+c)^(1/2)/d
 
3.6.10.2 Mathematica [A] (verified)

Time = 2.57 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.70 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {2 a^2 \sqrt {\cot (c+d x)} \left (A+2 \sqrt [4]{-1} (i A+B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right ) \sqrt {\tan (c+d x)}+B \tan (c+d x)\right )}{d} \]

input
Integrate[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d*x]) 
,x]
 
output
(-2*a^2*Sqrt[Cot[c + d*x]]*(A + 2*(-1)^(1/4)*(I*A + B)*ArcTan[(-1)^(3/4)*S 
qrt[Tan[c + d*x]]]*Sqrt[Tan[c + d*x]] + B*Tan[c + d*x]))/d
 
3.6.10.3 Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {3042, 4064, 3042, 4076, 27, 3042, 4075, 3042, 4016, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{3/2} (a+i a \tan (c+d x))^2 (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4064

\(\displaystyle \int \frac {(a \cot (c+d x)+i a)^2 (A \cot (c+d x)+B)}{\cot ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (-a \tan \left (c+d x+\frac {\pi }{2}\right )+i a\right )^2 \left (B-A \tan \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (-\tan \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4076

\(\displaystyle 2 \int \frac {(\cot (c+d x) a+i a) (a (i A+3 B)+a (A+i B) \cot (c+d x))}{2 \sqrt {\cot (c+d x)}}dx+\frac {2 i B \left (a^2 \cot (c+d x)+i a^2\right )}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {(\cot (c+d x) a+i a) (a (i A+3 B)+a (A+i B) \cot (c+d x))}{\sqrt {\cot (c+d x)}}dx+\frac {2 i B \left (a^2 \cot (c+d x)+i a^2\right )}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (i a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right ) \left (a (i A+3 B)-a (A+i B) \tan \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 i B \left (a^2 \cot (c+d x)+i a^2\right )}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 4075

\(\displaystyle \int \frac {2 a^2 (i A+B) \cot (c+d x)-2 a^2 (A-i B)}{\sqrt {\cot (c+d x)}}dx-\frac {2 a^2 (A+i B) \sqrt {\cot (c+d x)}}{d}+\frac {2 i B \left (a^2 \cot (c+d x)+i a^2\right )}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {-2 (A-i B) a^2-2 (i A+B) \tan \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 a^2 (A+i B) \sqrt {\cot (c+d x)}}{d}+\frac {2 i B \left (a^2 \cot (c+d x)+i a^2\right )}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 4016

\(\displaystyle \frac {8 a^4 (A-i B)^2 \int \frac {1}{2 (A-i B) a^2+2 (i A+B) \cot (c+d x) a^2}d\sqrt {\cot (c+d x)}}{d}-\frac {2 a^2 (A+i B) \sqrt {\cot (c+d x)}}{d}+\frac {2 i B \left (a^2 \cot (c+d x)+i a^2\right )}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {4 \sqrt [4]{-1} a^2 (A-i B) \text {arctanh}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a^2 (A+i B) \sqrt {\cot (c+d x)}}{d}+\frac {2 i B \left (a^2 \cot (c+d x)+i a^2\right )}{d \sqrt {\cot (c+d x)}}\)

input
Int[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]
 
output
(-4*(-1)^(1/4)*a^2*(A - I*B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d - ( 
2*a^2*(A + I*B)*Sqrt[Cot[c + d*x]])/d + ((2*I)*B*(I*a^2 + a^2*Cot[c + d*x] 
))/(d*Sqrt[Cot[c + d*x]])
 

3.6.10.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4016
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2*(c^2/f)   Subst[Int[1/(b*c - d*x^2), x], x, Sqrt[b 
*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]
 

rule 4064
Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(m_.)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp 
[g^(m + n)   Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d + c 
*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !Integer 
Q[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4075
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B 
*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f* 
x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1]
 

rule 4076
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-a^2)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n 
+ 1)/(d*f*(b*c + a*d)*(n + 1))), x] - Simp[a/(d*(b*c + a*d)*(n + 1))   Int[ 
(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n 
 - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m - 1) + b 
*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] 
 && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]
 
3.6.10.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 217 vs. \(2 (85 ) = 170\).

Time = 0.39 (sec) , antiderivative size = 218, normalized size of antiderivative = 2.20

method result size
derivativedivides \(-\frac {a^{2} \left (2 A \sqrt {\cot \left (d x +c \right )}+\frac {\left (2 i B -2 A \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {\left (2 i A +2 B \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {2 B}{\sqrt {\cot \left (d x +c \right )}}\right )}{d}\) \(218\)
default \(-\frac {a^{2} \left (2 A \sqrt {\cot \left (d x +c \right )}+\frac {\left (2 i B -2 A \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {\left (2 i A +2 B \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {2 B}{\sqrt {\cot \left (d x +c \right )}}\right )}{d}\) \(218\)

input
int(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x,method=_RETUR 
NVERBOSE)
 
output
-a^2/d*(2*A*cot(d*x+c)^(1/2)+1/4*(-2*A+2*I*B)*2^(1/2)*(ln((1+cot(d*x+c)+2^ 
(1/2)*cot(d*x+c)^(1/2))/(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan( 
1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)))+1/4*(2* 
I*A+2*B)*2^(1/2)*(ln((1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(1+cot(d*x+c) 
+2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan( 
-1+2^(1/2)*cot(d*x+c)^(1/2)))+2*B/cot(d*x+c)^(1/2))
 
3.6.10.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 385 vs. \(2 (81) = 162\).

Time = 0.25 (sec) , antiderivative size = 385, normalized size of antiderivative = 3.89 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\frac {\sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {2 \, {\left ({\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (-i \, A - B\right )} a^{2}}\right ) - \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {2 \, {\left ({\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{4}}{d^{2}}} {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (-i \, A - B\right )} a^{2}}\right ) - 2 \, {\left ({\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (A + i \, B\right )} a^{2}\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{d e^{\left (2 i \, d x + 2 i \, c\right )} + d} \]

input
integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algori 
thm="fricas")
 
output
(sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log(2 
*((A - I*B)*a^2*e^(2*I*d*x + 2*I*c) - sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^4/d 
^2)*(I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2 
*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((-I*A - B)*a^2)) - sqrt(-(-I* 
A^2 - 2*A*B + I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log(2*((A - I*B) 
*a^2*e^(2*I*d*x + 2*I*c) - sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^4/d^2)*(-I*d*e 
^(2*I*d*x + 2*I*c) + I*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2 
*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((-I*A - B)*a^2)) - 2*((A - I*B)*a^2*e^( 
2*I*d*x + 2*I*c) + (A + I*B)*a^2)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I 
*d*x + 2*I*c) - 1)))/(d*e^(2*I*d*x + 2*I*c) + d)
 
3.6.10.6 Sympy [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=- a^{2} \left (\int \left (- A \cot ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx + \int A \tan ^{2}{\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\, dx + \int \left (- B \tan {\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx + \int B \tan ^{3}{\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\, dx + \int \left (- 2 i A \tan {\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx + \int \left (- 2 i B \tan ^{2}{\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx\right ) \]

input
integrate(cot(d*x+c)**(3/2)*(a+I*a*tan(d*x+c))**2*(A+B*tan(d*x+c)),x)
 
output
-a**2*(Integral(-A*cot(c + d*x)**(3/2), x) + Integral(A*tan(c + d*x)**2*co 
t(c + d*x)**(3/2), x) + Integral(-B*tan(c + d*x)*cot(c + d*x)**(3/2), x) + 
 Integral(B*tan(c + d*x)**3*cot(c + d*x)**(3/2), x) + Integral(-2*I*A*tan( 
c + d*x)*cot(c + d*x)**(3/2), x) + Integral(-2*I*B*tan(c + d*x)**2*cot(c + 
 d*x)**(3/2), x))
 
3.6.10.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 174 vs. \(2 (81) = 162\).

Time = 0.32 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.76 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {4 \, B a^{2} \sqrt {\tan \left (d x + c\right )} - {\left (2 \, \sqrt {2} {\left (-\left (i - 1\right ) \, A - \left (i + 1\right ) \, B\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (-\left (i - 1\right ) \, A - \left (i + 1\right ) \, B\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )\right )} a^{2} + \frac {4 \, A a^{2}}{\sqrt {\tan \left (d x + c\right )}}}{2 \, d} \]

input
integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algori 
thm="maxima")
 
output
-1/2*(4*B*a^2*sqrt(tan(d*x + c)) - (2*sqrt(2)*(-(I - 1)*A - (I + 1)*B)*arc 
tan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(-(I - 1)*A 
- (I + 1)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt( 
2)*(-(I + 1)*A + (I - 1)*B)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c 
) + 1) + sqrt(2)*(-(I + 1)*A + (I - 1)*B)*log(-sqrt(2)/sqrt(tan(d*x + c)) 
+ 1/tan(d*x + c) + 1))*a^2 + 4*A*a^2/sqrt(tan(d*x + c)))/d
 
3.6.10.8 Giac [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} \cot \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algori 
thm="giac")
 
output
integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^2*cot(d*x + c)^(3/2) 
, x)
 
3.6.10.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2 \,d x \]

input
int(cot(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^2,x)
 
output
int(cot(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^2, x)